
Localization

amusewiki.org

Localization

Adding a new language (developer-only)
Go to lib/AmuseWikiFarm/I18N and run (for example to add swedish)

msginit --input=messages.pot --output=sv.po --locale=sv

Add the language code and the language string to theAmuseWikiFarm::Utils::Amuse::known_langs
method.
Add the datatable alias for i18n atAmuseWikiFarm::Controller::API
Add the language code to the script/upgrade_i18n script.
Add the babel name to Text::Amuse::_language_mapping if miss-

ing.
Tests which have a plan depending on the number of supported lan-

guages:

• t/controller_Latest.t

• t/multilang.t

• t/lexicon-wildcards.t

7

Mixing the two approaches will just lead to confusion, git conflicts, and
so on.
The format is as follows (plain JSON):

{
”term” : {

”hr” : ”Term in croatian”,
”en” : ”Term in english”,
”it” : ”Term in italian”

},
”another term [_1]” : {

”hr” : ”Another term in croatian with an argument [_1]”,
”en” : ”Another term in english with an argument [_1]”,
”it” : ”Another term in italian with an argumetn [_1]”

}
}

The JSONmust be correct, otherwise youwill not get any translation out
of that. You can use arguments for translationswith the [_1], [_2] syntax
or the gettext syntax (%1, %2, etc.).
Strings are expected to be unescaped (HTML-wise).
To validate the lexicon file prior to upload, use this (somehow longish)

one-liner:

perl -MJSON -MData::Dumper \
-e ’open (my $fh, ”<:encoding(UTF-8)”, ”site_files/lexicon.json”);

$/ = undef; my $json = <$fh>;
print Data::Dumper::Dumper(JSON::from_json($json));’

You can create the pofiles out of those fileswith the scriptamusewiki-upgrade-lexicon.
E.g.

script/amusewiki-upgrade-lexicon repo/*

Which will parse the lexicon.json files and dump the po files, merging
them if already existing. No git operation is performed.

6

Contents
Global . 5
Local PO files . 5
lexicon.json . 5
Adding a new language (developer-only) 7

3

If you need to update the translations in the UI, you have two ways to
do that, globally or locally for a single site.

Global
GNUgettextmessage catalogues (.pofiles) are located atlib/AmuseWikiFarm/I18N/xx.po,
where xx is the language code. Changes done here shouldn’t be site spe-
cific and if you improve the translations, please send the updated .po file
to me (melmothx@gmail.com) or fork the amusewiki repo and do a pull
request, making sure you’re aligned to the latest master branch.

Local PO files
You can override the UI translations and provide them for the categories
as well (if your site is multilingual or if you use codes instead of strings)
storing the relevant po files into the site_files/locales directory in
the site repository (e.g. repo/amw/site_files/locales/hr.po).

lexicon.json
Before version 1.8, the only way to override the translation was using a
JSON file in the site_files/lexicon.json file.

Internally, the application will see only the PO files. However, depend-
ing on your needs and preferences, you may find less complicated to con-
tinue to use this file instead of the po files.

On application restart, these files are read and PO file produced (or
when you call amusewiki-upgrade-lexicon against the repo directory.

So, you have two alternative ways:

• leave the po files uncommitted in the git repo, and continue as before
(keeping in mind that you need to manually restart the app or call
amusewiki-upgrade-lexicon to produce the po files when you
update it).

• commit the po files in the git and remove lexicon.json, banishing
it.

5

